In today's rapidly developing economy, the energy crisis and cost control have become challenges that every enterprise must face. Steel structure buildings, known for their high strength, quick construction, and recyclability, are widely used in industrial and civil construction. However, how to effectively control the cost of steel structure projects and enhance the economic benefits is a question that every professional in the steel frame structure industry needs to consider.

 

1. Selection of Column Spacing

The choice of column spacing is one of the key factors affecting the quotation of steel structure projects. The selection of economic column spacing can significantly reduce the amount of steel used, thereby reducing the project cost. According to research, the economic column spacing under standard load is usually between 8 to 9 meters. Beyond this range, the steel consumption of the roof purlins and wall frame systems will increase significantly, leading to uneconomical comprehensive costs.

 

For instance, for a workshop with a load of more than 10 tons, the economic column spacing is recommended to be between 6 to 7 meters. Additionally, if unequal column spacing is required, it is suggested to design the end span to be smaller than the middle span. This can make the roof purlins design more convenient and save materials when using continuous purlin design in steel structure buildings.

 

2. Determination of Reasonable Span

The choice of span also has a significant impact on costs. With a certain column height and load, appropriately increasing the span can not only save space but also reduce the foundation cost, improving the overall benefit. For example, when designing a portal frame, the reasonable span should be determined based on the height of the building. Blindly pursuing a large span is not the best choice, as it may lead to material waste and increased costs in steel structure buildings.

 

3. Selection of Roof Slope

The roof slope has a significant impact on the steel consumption of the frame. Research indicates that a slope of 1/10 to 1/30 is the most economical. For single-span frames, increasing the roof slope is an effective way to reduce the weight of the frame, with the greater slope leading to more steel savings. However, for multi-span frames, the situation is reversed; a large slope may increase the length of the inner columns, thereby increasing the steel consumption in steel structure buildings.

 

4. Selection of Eave Height

The adjustment of eave height also has a significant impact on costs. An increase in eave height will lead to an increase in the steel consumption of wall purlins and columns, thereby increasing costs. Therefore, in the design phase, eave height should be chosen reasonably according to actual needs to avoid unnecessary cost increases in steel structure buildings.

 

By following the above suggestions, we can effectively reduce the quotes for steel structure buildings while ensuring structural safety and functionality. This not only helps to enhance the competitiveness of enterprises but also promotes the rational use of resources. In practice, it is recommended to cooperate with professional steel structure companies to obtain more professional advice and services. Remember, reasonable design and precise cost control are the keys to reducing quotes for steel structure buildings. Let's work together to contribute to the construction of more economical and environmentally friendly steel structure buildings.

steel structure joint design prefabricated steel construction